The Importance of Pre-planning and Logistics for successful Incorporation of Dispersants into a National Response Programme.

Paul Foley (Technical Manager, OSRL)
Overview

➢ Why Plan?
➢ Dispersant – the numbers
➢ Logistics – supply chain
➢ Developing Readiness
➢ Realities of Response
Why Plan?

» Preparedness
 – Peace time preparation
 – Worse case scenario identification

» Response
 – Guidance and instruction during an incident

» Industry requirements
 – Regulators

» Company policy
 – HSE
Benefits of Contingency Planning

- Provides a response structure & procedures
- Improves operational efficiency & effectiveness
- Identifies issues in advance and allows mitigations to be put in place
- Ensures resources are identified and are accessible
- Saves time in an emergency
 - ‘Window of Opportunity’
Planning Cycle

1. Assess the Risk
2. Review Resources
3. Meet Required Legislation
4. Tiered Capability
5. Contingency Plan
6. Training
7. Exercise
8. Update Contingency Plan
Review Resources

- Resources available should be **adequate for the assessed risk**
- **Tiered response options** must be identified
- Resources must be well maintained and **accessible**
What are the numbers?

Planning for a WCS of 100,000bbls (15,899m³) / day

For a Surface Response, assume:
- DOR of 1:20 (1m³ of dispersant will treat 20m³ of oil)
- 100% contact and effectiveness

Air:
- Large scale aerial application, e.g. ADDS Pack
 - 17m³ of dispersant per sortie
- Assume 3 sorties in a 12 hour period
 - 51m³ per day = 1020m³ oil treated per day

Sea:
- Single boat spray system, e.g. AFEDO Nozzles
 - 50l/min for 12 hour period
 - 36m³/day per vessel = 720m³ treated per day
 - 2 x offshore systems = 72m³ / day

Total = 123m³ / day
(2,460m³ oil treated)
What are the numbers?

For a **Sub-Surface Response**, assume:
- DOR of 1:100 (1m3 of dispersant will treat 100m3 of oil)
- 100% contact and effectiveness

Dispersant injection system
- 110 l/min per wand (max 5 wands) = 6.6m3/hr
- Assume 24 hour continuous operation

Total = 159m3 day
(15,840m3 oil per day treated)

Surface + Subsurface Total = 282m3 per day required for a 100,000bbl/day spill*

*Illustrative purposes only: 100% effectiveness for either technique is unlikely.
Logistical Considerations

- Maintaining your supply chain for an ongoing event
- Dispersant is not an ‘off the shelf’ item
 - Supplier manufacture ramp up takes time
 - Shipment
 - International shipment
 - e.g. 1 x 747 = 90m³
 - In-country logistics
 - e.g. 1 x standard 40ft HGV trailer holds 24m³
- Import restrictions may create a ‘pinch point’
Stressing the International Supply Chain

1974 m3 of dispersant for one week of operation:

- $= 22 \times$ Boeing 747 loads

- $= 82 \times$ Heavy Goods Vehicles
Tiered Capability

Operational factors

- Probability and frequency of a spill occurring
- Worst case scenario incidents
- Oil type
- Impact on business operations

Setting factors

- Proximity to operations
- Operating conditions
- Sensitive resources at risk
- Legislation

![Inadequate Tier 2 capability](image)

![Robust Tier 2 capability](image)

![Remote operation, less reliance on Tier 3](image)
Tiered Response & Logistics Supply Chain

- Local first strike Tier 1 capability
 - Rapid response
 - Buys time to activate logistics

 “13.1: Stocking Criteria. Minimum quantity of OSD to be stocked shall be commensurate with oil spill risk as per approved contingency plan…”

- National / Regional Tier 2 support
 - Plugs any gaps between T1 and T3

- Centralised international Tier 3 capability
 - Shared costs; purchase, stockpile maintenance, testing, replacement
 - e.g. Global Dispersant Stockpile (GDS) of 5000m³
Developing Readiness

Aviation Considerations
- Airport requirements; runway length, strength (PCN), ground support (forklifts)
- Minimising tarmac time during reload (IBC vs. Bulk Carrier)
- Permits; overflying sensitive areas, low level, application
- Refuelling arrangements
- Flight scheduling – commercial passenger priority
- Access to surveillance support aircraft / comms

Vessel Application
- Vessel preidentification / appropriateness
- Resupply plan / distance from port

Effectiveness Monitoring
- Vessels / Fluorometer / Expertise
Some Realities

- Major ‘Macondo’ events are rare
 - Dispersant use is even more rare
- The importance of time cannot be overstated
- Size Matters!
 - Major events open doors in ways that smaller events struggle
- Mechanical recovery alone will not be adequate
 (average 10% effective)
 - Encounter rate is limiting factor
- Dispersant is only part of the toolbox
 - Cone of Response Concept
Cone of Response

At Source
1. Control the subsea release
2. Apply appropriate quantities of dispersants, subsurface injection

Oil Surfacing Nearest the Wellhead
1. Dispersant application
2. Containment and Recovery
3. In Situ burning

Beyond the Immediate Vicinity of the Wellhead
1. Aerial Dispersant applied

Further from the Wellhead
1. Dispersant Application
2. Mechanical Recovery using VOOs
Both with the assistance of remote sensing / spotter aircraft to ensure maximum efficiency

Shoreline
Protective booming of priority areas identified through SCAT assessments / area response plan
Summary

- Risk based pre-planning is essential
- Major events are rare, but not impossible
- Dispersant is just one tool in the toolbox
- Maintaining the supply chain is a challenge
- Tiered approach provides most efficient mix of in-country capability and international support.
Questions?

“Did someone clear this project with the control tower?”
BACKUP
Macondo Dispersant Use

6979m3 of dispersant used in total
- 3695m3 from air
- 2920m3 subsea
- 364m3 from ship
Indian Context

- Dispersant use must be documented in OSCP
- Mechanical recovery is preferred option
- ICG permission required
- NEBA required
- No shallow water use
- No application on emulsion
- Final shoreline cleanup
Response - Dispersant

- Aerial Application
 - UK Hercules L382-G
 - ADDS Pack