

The Importance of Pre-planning and Logistics for successful Incorporation of Dispersants into a National Response Programme.

Paul Foley (Technical Manager, OSRL)

© Copyright 2013. Oil Spill Response Limited.

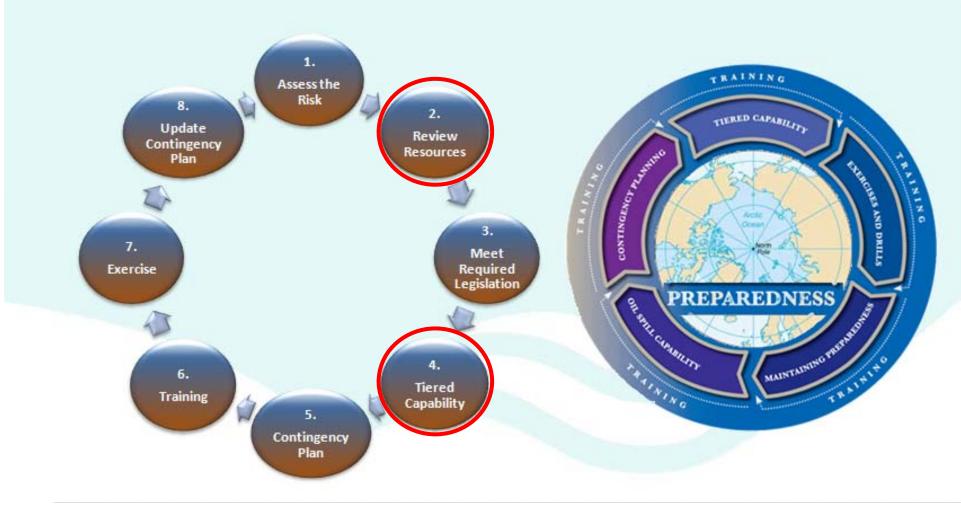
Overview

- > Why Plan?
- Dispersant the numbers
- Logistics supply chain
- Developing Readiness
- Realities of Response

Why Plan?

Preparedness

- Peace time preparation
- Worse case scenario identification
- Response
 - Guidance and instruction during an incident
- Industry requirements
 - Regulators
- Company policy
 - HSE


Benefits of Contingency Planning

- Provides a response structure & procedures
- Improves operational efficiency & effectiveness
- Identifies issues in advance and allows mitigations to be put in place
- Ensures resources are identified and are accessible
- Saves time in an emergency
 - 'Window of Opportunity'

Planning Cycle

Review Resources

Resources available should be adequate for the assessed risk

> Tiered response options must be identified

Resources must be well maintained and accessible

What are the numbers?

- Planning for a WCS of 100,000bbls (15,899m³) / day
- For a *Surface Response*, assume:
 - DOR of 1:20 (1m³ of dispersant will treat 20m³ of oil)
 - 100% contact and effectiveness
- Air:
 - Large scale aerial application, e.g. ADDS Pack
 - 17m³ of dispersant per sortie
 - Assume 3 sorties in a 12 hour period
 - $51m^3$ per day = 1020m³ oil treated per day
- Sea:
 - Single boat spray system, e.g. AFEDO Nozzles
 - 50l/min for 12 hour period
 - <u>**36m³**</u>/day per vessel = 720m³ treated per day
 - 2 x offshore systems = <u>72m³</u> / day
- Total = <u>123m³ / day</u>
 - (2,460m³ oil treated)



What are the numbers?

- For a Sub-Surface Response, assume:
 - DOR of 1:100 (1m³ of dispersant will treat 100m³ of oil)
 - 100% contact and effectiveness
- Dispersant injection system
 - 110 l/min per wand (max 5 wands) = $6.6m^3$ / hr
 - Assume 24 hour continuous operation
- Total = <u>159m³ day</u> (15,840m³ oil per day treated)

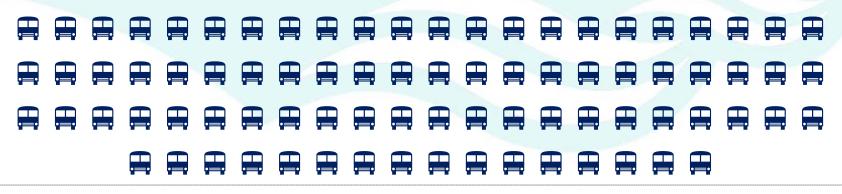
Surface + Subsurface Total = 282m³ per day required for a 100,000bbl/day spill*

*Illustrative purposes only : 100% effectiveness for either technique is unlikely.

Logistical Considerations

- Maintaining your supply chain for an ongoing event
- Dispersant is not an 'off the shelf' item
 - Supplier manufacture ramp up takes time
 - Shipment
 - International shipment
 - e.g. 1 x 747 = 90m³
 - In-country logistics
 - e.g. 1 x standard 40ft HGV trailer holds 24m³

Import restrictions may create a 'pinch point'



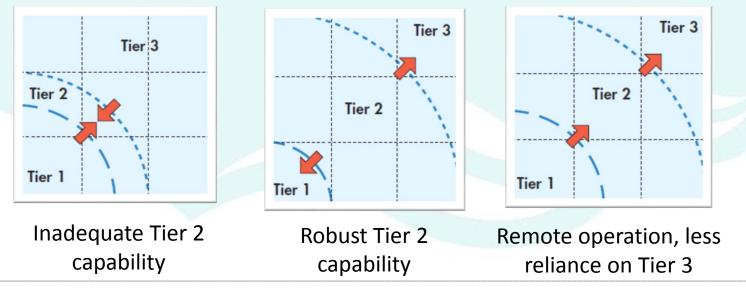
Stressing the International Supply Chain

1974m³ of dispersant for one week of operation: = 22 x Boeing 747 loads

= 82 x Heavy Goods Vehicles

Tiered Capability

Operational factors

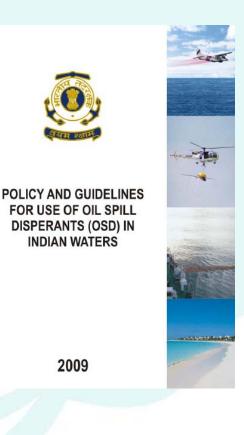

- Probability and frequency of a spill occurring
- Worst case scenario incidents
- Oil type

4. Tiered Capability

Impact on business operations

Setting factors

- Proximity to operations
- Operating conditions
- Sensitive resources at risk
- Legislation



Tiered Response & Logistics Supply Chain

- Local first strike Tier 1 capability
 - Rapid response
 - Buys time to activate logistics

"13.1: <u>Stocking Criteria</u>. Minimum quantity of OSD to be stocked shall be commensurate with oil spill risk as per approved contingency plan..."

- National / Regional Tier 2 support – Plugs any gaps between T1 and T3
- Centralised international Tier 3 capability
 - Shared costs; purchase, stockpile maintenance, testing, replacement
 - e.g. Global Dispersant Stockpile (GDS) of 5000m³

Developing Readiness

Aviation Considerations

- Airport requirements; runway length, strength (PCN), ground support (forklifts)
- Minimising tarmac time during reload (IBC vs. Bulk Carrier)
- Permits; overflying sensitive areas, low level, application
- Refuelling arrangements
- Flight scheduling commercial passenger priority
- Access to surveillance support aircraft / comms
- Vessel Application
 - Vessel preidentification / appropriateness
 - Resupply plan / distance from port
- Effectiveness Monitoring
 - Vessels / Fluorometer / Expertise

Some Realities

- Major 'Macondo' events are rare
 - Dispersant use is even more rare
- The importance of time cannot be overstated
- Size Matters!
 - Major events open doors in ways that smaller events struggle
- Mechanical recovery alone will not be adequate (average 10% effective)
 - Encounter rate is limiting factor
- Dispersant is only part of the toolbox
 - Cone of Response Concept

Cone of Response

At Source

1. Control the subsea release

2. Apply appropriate quantities of dispersants, subsurface injection

Oil Surfacing Nearest the Wellhead

- 1. Dispersant application
- 2. Containment and Recovery
- 3. In Situ burning

Beyond the Immediate Vicinity of the Wellhead

1. Aerial Dispersant applied

Further from the Wellhead

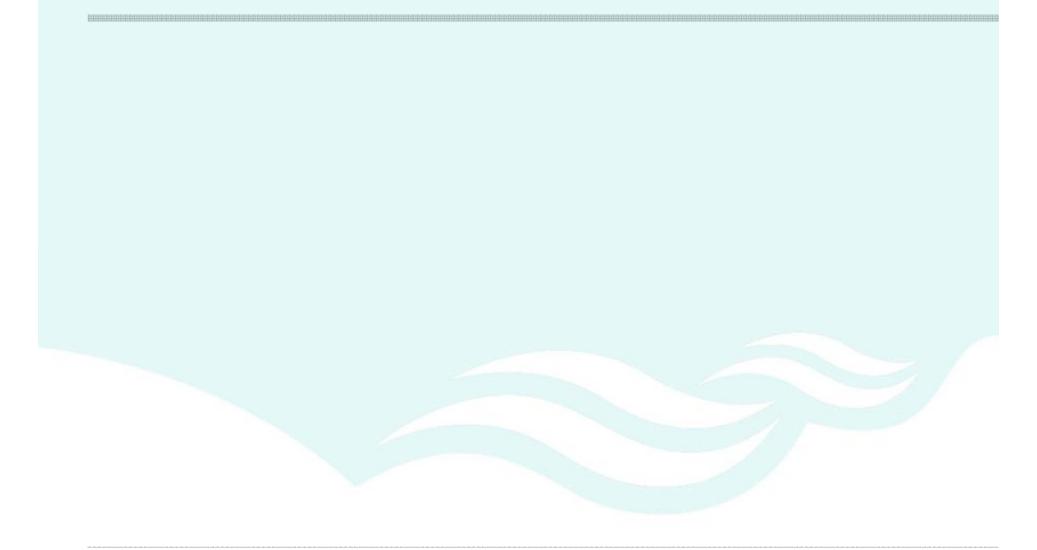
 Dispersant Application
 Mechanical Recovery using VOOs
 Both with the assistance of remote sensing / spotter aircraft to ensure maximum efficiency

Shoreline

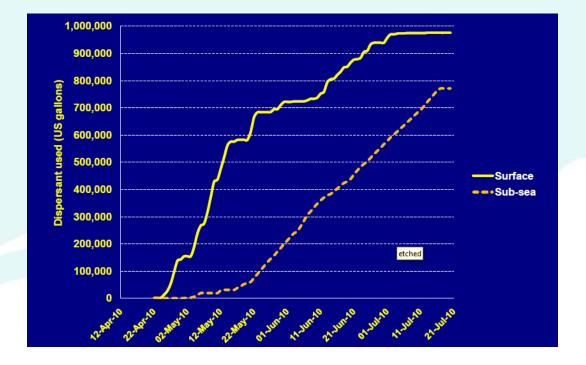
Protective booming of priority areas identified through SCAT assessments / area response plan

Summary

- Risk based pre-planning is essential
- Major events are rare, but not impossible
- Dispersant is just one tool in the toolbox
- Maintaining the supply chain is a challenge
- Tiered approach provides most efficient mix of in-country capability and international support.



Questions?



Macondo Dispersant Use

▶ 6979m³ of dispersant used in total

- 3695m³ from air
- 2920m³ subsea
- 364m³ from ship

Indian Context

- Dispersant use must be documented in OSCP
- Mechanical recovery is preferred option
- ICG permission required
- NEBA required
- No shallow water use
- No application on emulsion
- Final shoreline cleanup

POLICY AND GUIDELINES FOR USE OF OIL SPILL DISPERANTS (OSD) IN INDIAN WATERS

2009

Response - Dispersant

Aerial Application
– UK Hercules L382-G
– ADDS Pack

